skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wu, Yuexin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Radiology report generation, translating radiological images into precise and clinically relevant description, may face the data imbalance challenge — medical tokens appear less frequently than regular tokens, and normal entries are significantly more than abnormal ones. However, very few studies consider the imbalance issues, not even with conjugate imbalance factors. In this study, we propose a Joint Imbalance Adaptation (JIMA) model to promote task robustness by leveraging token and label imbalance. We employ a hard-to-easy learning strategy that mitigates overfitting to frequent labels and tokens, thereby encouraging the model to focus more on infrequent labels and clinical tokens. JIMA presents notable improvements (16.75–50.50% on average) across evaluation metrics on IU X-ray and MIMIC-CXR datasets. Our ablation analysis and human evaluations show the improvements mainly come from enhancing performance on infrequent tokens and abnormal radiological entries, which can also lead to more clinically accurate reports. While data imbalance (e.g., infrequent tokens and abnormal labels) can lead to the underperformance of radiology report generation, our imbalance learning strategy opens promising directions on how to encounter data imbalance by reducing overfitting on frequent patterns and underfitting on infrequent patterns. 
    more » « less
    Free, publicly-accessible full text available June 20, 2026
  2. Mortazavi, Bobak J; Sarker, Tasmie; Beam, Andrew; Ho, Joyce C (Ed.)
    Imbalanced token distributions naturally exist in text documents, leading neural language models to overfit on frequent tokens. The token imbalance may dampen the robustness of radiology report generators, as complex medical terms appear less frequently but reflect more medical information. In this study, we demonstrate how current state-of-the-art models fail to generate infrequent tokens on two standard benchmark datasets (IU X-RAY and MIMIC-CXR) of radiology report generation. To solve the challenge, we propose the \textbf{T}oken \textbf{Im}balance Adapt\textbf{er} (\textit{TIMER}), aiming to improve generation robustness on infrequent tokens. The model automatically leverages token imbalance by an unlikelihood loss and dynamically optimizes generation processes to augment infrequent tokens. We compare our approach with multiple state-of-the-art methods on the two benchmarks. Experiments demonstrate the effectiveness of our approach in enhancing model robustness overall and infrequent tokens. Our ablation analysis shows that our reinforcement learning method has a major effect in adapting token imbalance for radiology report generation. 
    more » « less